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Path Planning and Open-Loop Shape Control
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We characterize the planned path for a shape change in a tensegrity structure as a path from one equilibrium
to another. For tensegrity structures, this means that in every desired configuration the structure has to satisfy
tensegrity conditions. Required trajectories are feasible, and changes in potential energy are not required to follow
these trajectories. This is a benefit over normal control paths that require strain-energy changes because such energy
must be supplied by the control system. For the class of modular tensegrity structures defined, configurations that
satisfy tensegrity conditions can be parameterized in terms of only a few parameters that can meaningfully be
related to the overall desired shape of the structures. Equilibrium rest lengths of string elements are defined first.
An open-loop rest-length control is defined by slowly varying desired geometric parameters, which causes the
structure to track trajectories defined by the time-dependent geometric parameters. Examples with simulation
results show different reconfiguration scenarios of tensegrity plates and class-2 tensegrity towers.

I. Introduction

A TENSEGRITY structure is a prestressable stable truss-like
system. As an art form, tensegrity structures were first intro-

duced by Snelson1 and Fuller.2 Unlike regular trusses, tensegrities
involve string elements that are capable of transmitting load in one
direction only. Therefore, the set of admissible topologies for the
tensegrities is much smaller than the set of topologies that yields a
finite mechanism structure. Historically, form-finding and rigidity
problems have comprised the major portion of tensegrity research
because of this peculiar property of tensegrity structures.3−8

It is fair to say that the difficulties associated with the param-
eterization of tensegrity geometries had a large impact on almost
all areas of tensegrity research. Hence, the number of results on
the shape control of tensegrities did not follow the early recog-
nized potential of these structures. Several methods for controlling
the shape of tensegrities have been proposed, from static based to
dynamic based. Early proposed algorithms were mostly static meth-
ods for controlling the configuration of tensegrities. Because they
could not be regarded as control algorithms in the dynamic sense,
classifying them as methods for modifying shape of a tensegrity
more closely describes their true character. These strategies usually
require simpler actuators compared to dynamically controlled struc-
tures, and they are still considered for certain applications.9 Some
of the recently proposed concepts10 that fall into this group include
embedding bistable devices in the structures. These devices store
strain energy that is used for deploying the structures.

The problem of controlling the shape of tensegrities in the dy-
namic sense was first addressed by Sultan, and Skelton11,12 and
Sultan et al.13,14 Available tensegrity control results can be clas-
sified into two categories, the first9,12,15−17 concerning tensegrity
reconfigurations as tracking control problems, as opposed to the set
point regulation problems11,13,14,18,19 representing the second cate-
gory. Several different dynamic models of tensegrity structures have
been developed.19−21 The nonlinear dynamic model of tensegrity
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structures used for the simulations shown in this paper is derived by
Skelton et al.21 and implemented in the TENSOFT software.

There are two main contributions of this paper. First, we show
that the form-finding problem can be significantly simplified for the
modular tensegrity structures. Because of their specific symmetry,
the equilibrium conditions22 can be broken down to a collection of
smaller problems independently of the size of the original struc-
ture. The set of structure composition rules associated with modular
tensegrity structures is defined. These rules represent an analytical
method for the analysis of equilibrium geometries and the associated
prestress for these structures. They facilitate analytical solutions of
the equilibrium conditions for modular tensegrity structures of ar-
bitrary sizes.

The second contribution of the paper is the demonstration of an
open-loop control strategy based upon the static equilibria condi-
tions. These conditions can be characterized as time dependent if the
resulting motion is slow compared to the dynamics of the system.
For the nonlinear system whose model and equilibria are parame-
terized, a sufficiently slow variation of the parameter set produces
the response of the system that remains in the close proximity of the
parameterized equilibrium manifold.

II. Tensegrity Equilibrium Conditions
Definition 1: The nodes νk, k = 1, . . . , nn of a tensegrity structure,

are the points where bars and strings of the structure connect. A nodal
vector, pk ∈ R

3, represents the position of the node νk . The sets of
all nodes of a tensegrity structure and associated nodal vectors are
denoted N and P, respectively.

Definition 2: An element, ei = {[νk, ν j ], zi }, k �= j, i = 1, . . . , ne,
of a tensegrity structure is either a bar or a string that connects the
two nodes νk and ν j of the tensegrity. The pair [νk, ν j ] is an ordered
pair, and zi identifies the element type. For the tensegrity structure
with the element set E, zi is defined as follows:

zi =
{

1, ei ∈ Es

−1, ei ∈ Eb (1)

where Es ∈ E and Eb ∈ E are the subsets of the string and bar ele-
ments of the tensegrity structure.

Definition 3: An element vector, gi ∈ R
3, is a vector along the

length of an element ei = {[νk, ν j ], zi }. It emanates from the first
node νk and terminates at the second node ν j of the element, that is,

gi = p j − pk
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It is obvious that magnitude of an element vector gi is equal to
its length ‖gi‖, which is denoted by li .

Definition 4: The element force vector fj i ∈ R
3 represents the con-

tribution of the internal force of the element ei to the balance of the
forces at the node ν j , and it can be written as

fj i = c jiλi gi , fi = λi‖gi‖ = λi li (2)

where element force density λi is a scalar.
Obviously, scalars c ji in Eq. (2), which are defined as the typical

elements of the matrix C(E) ∈ R
nn × ne , take on one of the following

values: c ji = ±1 or c ji = 0.
Let Rn

m denote the vector space of vectors x that have the following
structure:

x ∈ R
n
m ⇒ xT = [x1 x2 · xn]T , xi ∈ R

m, R
m = R

m
1

(3)

Nodal vector p ∈ R
nn
3 , element vector g(E, P) ∈ R

ne
3 , force density

vector λ∈ R
ne , and vector z ∈ R

ne are formed by collecting all of
the nodal vectors pi , element vectors gi , force densities λi , and the
individual element type identifiers

p =




p1

p2

·
pnn


 , g =




g1

g2

·
gne




λ =




λ1

λ2

·
λne


 , z =




z1

z2

·
zne


 (4)

Let the member-node incidence matrix of the oriented graph asso-
ciated with E be denoted M(E) ∈ R

ne × nn , and let M ∈ R
3ne × 3nn be

defined as M = M ⊗ I3. The typical element mi j of the matrix M is
mi j = 1 or mi j − 1 if the element ei terminates at or emanates from
the node ν j ; otherwise, mi j = 0. Let the ns string elements in Es be
numbered first. Then, vector g and matrix M can be partitioned as
follows:

g =
[

gs

gb

]
= Mp, M =

[
ST

BT

]
, S ∈ R

3nn × 3ns

One can show that equilibrium conditions for the prestressed struc-
ture with strings under tension can be written as

Cg̃λ = 0, ‖λ‖ > 0, λi ≥ 0, ei ∈ Es (5)

C = [−S B], g = Mp =
[

ST

BT

]
p (6)

Fig. 1 Sparsity pattern of equilibrium equations for a composition of two tensegrity structures.

if the linear operator ˜ acting on the vector x ∈ R
n
m is defined as

follows:

x̃ : = blockdiag{x1 . . . , xi , . . . xn} ∈ R
mn × n, xi ∈ R

m

Let the tensegrity structure �, defined by the triple � = {E, P,λ},
admit element and nodal symmetry I (x) (Ref. 22), so that all of
its elements and nodes can be grouped, respectively, in nec and
nnc element and node equivalence classes. Then, the full vector of
force densities λ can be expressed as a linear mapping from the
reduced set of the independent force density variables λ∈ Rnec , by
defining matrix Q ∈ Rne × nec . Furthermore, the size of the problem
can be reduced by keeping only the set of independent equations
in Eq. (5). This can be accomplished by multiplying the equality
in Eq. (5) from the left with a sparse matrix D ∈ R

3nnc × 3nn . The
structure of the matrices Q and D corresponding to the symmetric
problem is given by Masic et al.22 and Masic.23 If a change of
geometric variables is defined so that p = p(α,β,γ, . . .) and the
shape constraints in the form ϕ(α,β,γ . . .) = 0 are included in the
problem, the symmetric tensegrity form-finding problem becomes
as follows:

Given data, D, S, B, Q,R, Es , find λ,α,β,γ, . . . , such that

DCg̃Qλ = 0, C = [−S B], p = p(α,β,γ, . . .)

p = Rp, g = Mp =
[

ST

BT

]
p, ϕ(α,β,γ, . . .) = 0

‖Qλ‖ > 0, λi ≥ 0, ei ∈ Es (7)

A more detailed explanation of tensegrity equilibrium equations (5)
and (6) and their form for symmetric structures [Eqs. (7)] can be
found in the literature.22,23

III. Composition of Tensegrity Structures
The equilibrium equation (5) can exhibit a particular structured

form under certain shape constraints. The structure of these equa-
tions can be exploited to simplify their solution. The planar tenseg-
rity of Fig. 1 is given as the example that supports these claims and
motivates the analysis that follows. The sparsity pattern of the ma-
trix Cg̃ of this structure indicates that the set of equilibrium equa-
tions represents the combination of two almost decoupled linear
equations in force density variables λ. Equation (5) can be cast
in the similar structured form for a large class of tensegrity struc-
tures. This highly structured problem can be further decomposed
into several decoupled blocks of equations, each of which repre-
sents the equilibrium conditions for a smaller substructure. Several
definitions and rules will provide the method for composition and
decomposition of tensegrity structures to simplify their equilibrium
analysis.

Definition 5: Node νr of the structure � is said to be attached to
element ei = {[ν j , νk], zi } if element ei is replaced in the structure
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definition with elements eq = {[ν j , νr ], zi } and es = {[νr , νk], zi }.
This will formally be written as [eq , es] = νr @ei .

Definition 6: Node νr of structure � is said to be attached to node
ν j if node νr is replaced by node ν j in the definition of all elements
incident with node νr . This will formally be written as νr ← ν j .

The node attachment νr ← ν j should not be confused with the
node placement pr = p j . Although the former operation removes
node νr from the set N, and consequently pr from the set P, the
latter operation only place node νr at the position of the node ν j , so
that both these overlapping nodes continue to exist.

Definition 7: Superposition of two overlapping elements
ei = {[ν j , νk], zi } and eq = {[ν j , νk], zi } or eq = {[νk, ν j ], zi } of
structure � is the operation in which element eq is deleted from
the set E. This will formally be written as eq ← ei .

The following theorem concerns the composition of equilibrium
structures and the main property associated with the result of this
composition.

Theorem 1: Let the tensegrity structure � = {E, P,λ} be defined
from the two equilibrium tensegrity structures �1 = {E1, P

1,λ1} and
�2 = {E2, P

2,λ2} by attaching some nodes of structure �1 to ele-
ments or nodes of structure �2 and by attaching some nodes of
structure �2 to elements or nodes of structure �1, so that all of the
following conditions are satisfied:

1) If node νr is attached to node ν j , then the nodal vectors satisfy
pr = p j .

2) If node νr is attached to element ei = {[ν j , νk], zi }, so that
[eq , es] = νr @ei , then the nodal vector pr satisfies

pr = p j + a(pk − p j ) for 0 < a < 1 (8)

and force densities λp and λq of elements ep and eq satisfy

λh = λi‖gi‖2/‖gh‖2 = fi/lh, h = q, s (9)

3) If overlapping elements ei with force density λi and e j with
force density λ j are generated and replaced by their superposition
e j ← ei , the force density of the remaining element is λ j + λi , that
is,

λi ← λ j + λi

Then, structure � is an equilibrium structure.
Structure � of Theorem 1 is said to be the composition of the two

component structures �1 and �2.
Proof: The equilibrium conditions of structures �1 = {E1, P

1,λ1}
and �2 = {E2, P

2,λ2} are defined as follows:
[

C(E1) 0

0 C(E2)

][
g̃1 0

0 g̃2

][
λ1

λ2

]
= 0 (10)

where

g1 = g(E1, P
1), g2 = g(E2, P

2) (11)

Consider first the case where nodes of �2 are attached to nodes of �1.
Without loss of generality, assume that only node νr of �2 is attached
to the node ν j of �1. Although the definitions of elements incident
with the node νr have changed, the vector of element vectors of the
new structure � = {E, P,λ} remains the same as the vector of the
disjoint structures, that is,

g =
[

g1

g2

]

Let the connectivity matrices be partitioned as follows:

CT (E1) = [
CT

1 j− CT
1 j

CT
i j+

]
, CT (E2) = [

CT
2r− CT

2r
CT

2r+

]
(12)

where C1 j and C2r denote the rows of the matrices corresponding to
the nodes ν j and νr , respectively. The connectivity matrix C(E) and

the equilibrium conditions for the structure � have the following
form: 



|
C1 j− |
C j | C2r

C1 j+ |
− − −
0 | C2r−
0 | C2r+




[
g̃1 0

0 g̃2

][
λ1

λ2

]
= 0

Compared to the disjoint structures, the new equilibrium conditions
are altered only at the node ν j , and they have the following form:

C j g1λ1 + Cr g2λ2 = 0 (13)

From Eq. (10),

C j g1λ1 = 0, Cr g2λ2 = 0

which shows that Eq. (13) holds true in the new connected config-
uration. This proves that attaching nodes to nodes does not violate
the equilibrium if condition 1 is satisfied.

Consider now the second case, where nodes of �2 are attached to
elements of �1. Without loss of generality, assume that only node
νr of �2 is attached to the string element ei = {[ν j , νk], zi } of �1, so
that [eq , es] = νr @ei , and eq = {[ν j , νr ], zi }, es = {[νr , νk], zi }. Let
C(E1), g(E1, P

1), and λ1 be partitioned as follows:

C(E1) = [C1i− C1i C1i+ ], g1 = g(E1, P
1) =




g1
i−

g1
i

g1
i+




λ1 =



λ1

i−
λ1

i

λ1
i+




After attaching the node νr to the element ei , the new equilibrium
conditions must be defined. Note that the definition of the elements
of E

2 is not affected by attaching the node νr to the element ei , so
that C(E2), g2, and λ2 do not need to be redefined. To account for
the substitution of the element ei with the two new elements eq , es ,
we define the new element vector

g1′ =




g1
i−

gq

gs

g1
i+




and redefine connectivity matrix C(E) of the new structure. This is
accomplished by substituting the column corresponding to the ele-
ment ei of the connectivity matrix in Eq. (10), with the two columns
that correspond to the newly formed elements eq and es . With this,
the equilibrium conditions of the new structure have the following
form:



| 0 0 | |
| I 0 | ← ν j |

C1i− | 0 0 | C1i+ | 0

| 0 −I | ← νk |
| 0 0 | |

− − − − − − − −
| 0 0 | | C2r−

0 | −I I | 0 | C2r

| 0 0 | | C2r+




[
g̃1′

0

0 g̃2

]



λ1
i−

λq

λs

λ1
i+
λ2




= 0
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Applying the relationship in Eq. (9) yields

C




g̃1
i− 0 0 0 0

0 gq 0 0 0

0 0 gs 0 0

0 0 0 g̃1
i+ 0

0 0 0 0 g̃2







λ1
i−

λi‖gi‖2/‖gq‖2

λi‖gi‖2/‖gs‖2

λ1
i+
λ2




= 0

This and the result of condition 2,

gq/‖gq‖2 = gs/‖gs‖2 = gi/‖gi‖2

gives

C




g̃1
i− 0 0 0 0

0 gi 0 0 0

0 0 gi 0 0

0 0 0 g̃1
i+ 0

0 0 0 0 g̃2







λ1
i−

λi

λi

λ1
i+
λ2




= C




g̃1
i− 0 0 0

0 gi 0 0

0 gi 0 0

0 0 g̃1
i+ 0

0 0 0 g̃2






λ1

i−
λi

λ1
i+
λ2


 = 0

Finally, simple manipulations reduce these equilibrium conditions
to




| 0 | |
| I | ← ν j |

C1i− | 0 | C1i+ | 0

| −I | ← νk |
| 0 | |

− − − − − − −
| 0 | | C2r−

0 | 0 | 0 | C2r

| 0 | | C2r+







g̃1
i− 0 0 0

0 gi 0 0

0 0 g̃1
i+ 0

0 0 0 g̃2






λ1

i−
λi

λ1
i+
λ2


 = 0

which has the identical form as Eq. (10). This proves that attaching
nodes to elements does not violate equilibrium if it is performed in
concordance with conditions 2 of the theorem.

We omit the proof of the obvious fact that the element superposi-
tion does not violate equilibrium of the structure if it is performed
in concordance with condition 3. �

Theorem 1 indicates that the fact that a tensegrity structure repre-
sents a composition of several tensegrity structures is related to the
dimension of its prestress cone.22

Result 1: The structure that is the composition of nc equilibrium
tensegrity structures, each of which has n pmi

, i = 1 . . . nc, prestress
modes, has at least n pm = ∑

n pmi
prestress modes.

The composition of nc component structures that can be classified
in nm groups of identical structures, called the modules, will be
called the nm-hedral modular tensegrity structure. If the structure
has only one module, then the module will be called the unit and
the structure monohedral.

Observe that the tensegrity plates6 in Fig. 2 represent monohedral
modular tensegrity structures, and they are composed of identical
one-stage shell-class tensegrity units. The plates depicted are com-
posed of four- and six-bar tensegrity units. The specific symmetry
of these structures is caused by the particular relative positions of
the units in the plates.

a)

b)

c)

Fig. 2 Examples of modular tensegrities: tensegrity plates (panels a
and b) made of four- and six-bar units and tensegrity tower (panel c)
composed of four-bar modules.
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Fig. 3a Geometry of the symmetric one-stage shell-class module defin-
ing its geometric parameters.

Fig. 3b Node and element numbering for different connectivity
schemes.

IV. Geometry and Equilibrium Analysis of One-Stage
Shell-Class Tensegrity Module

In the sequel geometry and equilibrium conditions are investi-
gated for the tensegrity structure that serves as a module in larger
tensegrity structures.

A. Module Geometry
We analyze a n-bar shell-class21 tensegrity in the configuration

that admits n-fold rotational symmetry Cn about z axis as the nodal
symmetry. Its nodal positions can be expressed in terms of geometric
parameters22 lb, r, α, t , which are depicted in Fig. 3, and the constant
matrix R that reflects symmetry of the structure. The nodal vector
of the structure p ∈ R

2n
3 can be related to these parameters in the

following compact form22:

p = Rp, p = p(n, lb, r, α, t) =
[

p1(n, lb, r, α, t)

p2n(n, lb, r, α, t)

]
(14)

Define matrix R of the rotation about the z axis:

R(x) =


 cos x sin x 0

− sin x cos x 0

0 0 1


 (15)

The nodal parameterization (14) takes the following form:

p1 = [r 0 0]T , p3 = R(2π/n)p1

p2n − 1 = R−1(2π/n)p1 p2n = R(α)[tr 0 h]T

p2 = R(2π/n)p2n, p2n − 2 = R−1(2π/n)p2n (16)

The requirement that the height h of the structure be a positive real
number yields the following definition of the feasible set for the
geometric variables:

h =
√

l2
b − r 2 − r 2t2 + 2r 2t cos(2π/n + α) (17)

0 < r < lb

/
[1 + t2 − 2t cos(2π/n + α)], 0 < t, 0 < lb

(18)

B. Equilibrium of One-Stage Shell-Class Tensegrity Module
All configurations that admit the given nodal symmetry are pa-

rameterized by Eqs. (16), regardless of equilibrium conditions being
satisfied. One must solve Eqs. (7) to find the subset of these sym-
metric configurations that yield equilibrium tensegrity structures.
Because of the element symmetry, equilibrium equations in Eqs. (7)
can be reduced to the balance of the forces equations at only two
representative nodes ν1 and ν2n . The element vectors appearing in
the equilibrium equations at nodes ν1 and ν2n are computed as

g1 = p1 − p2, g2 = p3 − p1, g3 = p1 − p2n − 1

g4 = R[−m(2π/n)] p2n − p1, g5 = p2 − p2n

g6 = p2n − p2n − 2, g7 = p2n − R[q(2π/n)] p3

g8 = R[−q(2π/n)] p2n − 2 − p1, g9 = p2n − 1 − p2n

g10 = p2n − R[m(2π/n)] p1

The set of equations defining the equilibrium configuration of the
module becomes

g1λ1 + g2λ2 − g3λ3 + g4λ4 + g8λ8 = 0

g5λ5 − g6λ6 − g7λ7 − g9λ9 − g10λ10 = 0

λi ≥ 0

The element symmetry of the structure allows further reduction in
the number of force density variables:

λ9 = λ1, λ3 = λ2, λ6 = λ5, λ8 = λ7, λ10 = λ4

(19)
If one defines matrices D, C, g̃, Q corresponding to the problem
and casts the problem in the standard form (7), the equilibrium
conditions reduce to the following compact form:

DCg̃Qλ = 0 (20)

λ = [λ1 λ2 λ4 λ5 λ7]T (21)

λi ≥ 0 (22)

Hence, λ that solves Eq. (20) is computed as a vector in the null
space of DCg̃Q. Because the basis � of the null space of DCg̃Q is
one dimensional, the solution λ is given by

λ1 ≥ 0 (23)

λ2 = λ1
t csc2(π/n) sin[(m + 1)π/n] sin[(q + 2)π/n]

2 cos[(m + q + 1)π/n − α]
(24)

λ5 = λ1
csc2(π/n) sin[(m + 1)π/n] sin[(q + 2)π/n]

2t cos[(m + q + 1)π/n − α]
(25)

m − q �= 1 (26)

λ4 = λ1
cos(qπ/n − α) sin[(q + 2)π/n]

cos[(m + q + 1)π/n − α] sin[(q − m + 1)π/n]
(27)

λ7 = −λ1
cos[(1 − m)π/n + α] sin[(1 + m)π/n]

sin[(q − m + 1)π/n] cos[(m + q + 1)π/n − α]
(28)

m − q = 1 (29)

λ4 = λ1 (30)

λ7 = 0 (31)
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which can be written in a more compact form:

λ = �λ1, � = �(n, α, t, m, q) (32)

The connectivity for which m − q = 1 corresponds to the case where
the strings e4 and e10 overlap, so that they can be substituted with a
single string.

For a given number of bars n and string connectivity parameters
m and q, the permissible α can be computed from the condition

λi ≥ 0 (33)

The solution to

λ7 = 0, λ4 = 0 (34)

for α gives the values of angle α where λ7 and λ4 change their signs,

α = π/2 + (m − 1)(π/n), α = π/2 + qπ/n (35)

Finally, it can be verified that the admissible α is defined as

α = min[π/2 + qπ/n, π/2 + (m − 1)(π/n)] (36)

ᾱ = max[π/2 + qπ/n, π/2 + (m − 1)(π/n)] (37)

α ∈ [α, ᾱ] (38)

Note that if the string e4 and the string e7 are both present in the
structure, equilibrium geometry is not unique. That is, Eqs. (36–38)
define the range of α that yields an equilibrium tensegrity geometry.
In the case where either of these two different groups of strings
is not present in the structure, the equilibrium geometry becomes
unique, and it is defined by the corresponding limits of α. A more
detailed analysis of the module equilibrium for several different
connectivity cases and asymmetric distribution of the prestress is
provided by Masic.23

Note that the basis � for the prestress cone C(�) depends only
on the twist angle α and the truncation ratio parameter t . This is a
result of the fact that all symmetric nodal configurations where these
two parameters are kept constant are related through the tensegrity
similarity transformations of the form p2 = T (p1) with p2

i = Ap1
i .

This geometric transformation does not alter the equilibrium of the
structure and associated force density variables regardless of the
choice for the constant matrix A ∈ R

3 × 3 (Ref. 22). The relationship
between geometry of any two tensegrity modules that share common

Fig. 4 Relative position of adjacent units in periodic tensegrity plates. Two different topologies can be generated by utilizing the same unit. Changing
the lattice parameters yields the two distinct structures depicted at the left and right.

n, r, α, and t , but different bar lengths lb1 �= lb2 , has the form of a
similarity transformation with

A =


1 0 0

0 1 0

0 0 h1/h2




where h1 and h2 are computed from Eq. (17). In the view of this
result, equilibrium analysis of the one-stage module represents a
solution of equilibrium conditions for the elliptical module derived
by a similarity transformation from the unit that admits Cn symmetry
about the z axis.

V. Geometry and Equilibrium of Monohedral
Modular Tensegrity Plates

By a simple observation, it has already been inferred that the
tensegrity plates in Fig. 2 belong to the class of monohedral modu-
lar tensegrity structures. The shape of the modules (units) and their
relative positions allow the whole plane of the plate to be filled
with the identical units to compose a monohedral periodic infinite
plate. The set P

c
∞ of geometrical centers pc

i ∈ R
3 of the units of the

infinite plate represents a lattice spanned by two linearly indepen-
dent vectors s1 ∈ R

3 and s2 ∈ R
3 called lattice generators, so that

pc
i = ai s1 + bi s2, ai , bi ∈ Z (see Fig. 4). The only tensegrity plates

of interest for this analysis are the ones that can be regarded as
sections of the infinite periodic monohedral tensegrity plates that
are composed of n-bar one-stage shell-class tensegrities units that
admit Cn symmetry. In other words, the plate can be defined by the
composition of the finite number of units of the infinite plate whose
geometrical centers belong in the subset P

c ∈ P
c
∞ of the associated

infinite plate.
In the next section we analyze the relationship between the geo-

metric parameters of the unit and the parameters of the associated
lattice that enables composition of the units in the periodic plate.

A. Geometry of Four- and Six-Bar Unit Monohedral Modular Plates
We analyze relative positions of the units of the plates in Fig. 4.

Let strings e2′ and e2′′ , e6′ and e6′′ be formed after dividing strings e2

and e6 as the result of the composition of the two units as indicated
in Fig. 4. In this analysis we compute only the overlap parameter γ .
This parameter defines the lengths of the strings e2′ and e2′′ , which
are generated by attaching nodes of a unit to elements of an adjacent
unit, and it represents the ratio γ = l2/ l2′ . It is the only parameter
of the overall plate geometry that appears in the formulation of our
plate control algorithm. Masic23 provides a more detailed analysis
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Fig. 5 Force distribution in the n-bar stable unit plate.

of different plate topologies. Define angle β as the angle between
the projections of the top and bottom polygon of the unit onto x − y
plane. This angle is generally different from the angle α and is
computed as

β = mod[α, (2π/n)] (39)

where mod(x, y) is the remainder operator of the division x/y.
Define angle δ as a half of the angle of a regular n-sided polygon
that can be computed as

δ = (π − 2π/n)/2 = π/2 − π/n (40)

The overlap ratio γ for four- and six-bar units can be computed
for both connectivity cases by computing the length of the element
e2′ connecting the nodes at D and B in Fig. 4. In the first connectivity
case, for β �= 0, length l2′ of the string e2′ is computed by applying
the law of sines to triangle O AB:

sin(π − δ − π/n + β/2)/r = sin(π/n − β/2)/(l ′
2/2) (41)

Substituting Eq. (40) into Eq. (41) and dividing length l2′ by the
total length l2 of the string connecting nodes at D and E yields

γ = l2′/DE = l2′/l2 = 1 − tan(β/2) (42)

Similarly, it can be verified that in the second connectivity case the
feasible overlap ratio satisfies

γ = l2′/DE = l2′/l2 = csc(π/n) sec(π/n − β/2) sec(β/2) (43)

Observe that when β = 0 the overlap ratio γ is not unique for both
connectivity cases, and it can take values γ ∈ [0, 1].

B. Equilibrium of Stable Unit Tensegrity Plates and Class-2
Tensegrity Towers

A monohedral modular tensegrity plate can be formed from its
modules by a sequence of structure composition operations. All of
nm one-stage shell-class modules must share the same geometric pa-
rameters n, lb, r, α, t in Eqs. (14) but not necessarily the same value
for the force density λ1 in Eqs. (23–31). The collection of these
force densities for all of the modules parameterizes the prestress
cone of the stable unit plate. Let the collection of force densities,
λi

1 ≥ 0, i = 1, . . . , nm , of the bars of the nm modules be given. Let
λi

j = λ j (λ
i
1) denote the solutions λ j of Eqs. (23–31) and Eqs. (19)

when λ1 = λ
j
1. Let λik

j denote the force densities of the elements

introduced by the composition of the two adjacent units with cen-
ters pc

i and pc
k (Fig. 5). Equations (44–50) define equilibrium force

densities for all elements in the plate:

λi
j = λ j (λ

i
1), j = 1, 4, 5, or 7 (44)

n = 4, 6 (45)

λik
j = λ2

(
λi

1

)/
γ + λ2

(
λk

1

)/
γ, j = 2′, 6′ (46)

λi
j = λ2

(
λi

1

)/
(1 − γ ), j = 2′′, 6′′ (47)

n = 3 (48)

λi
j = λ2

(
λi

1

)/
γ, j = 2′, 6′ (49)

λi
j = λ2

(
λi

1

)/
(1 − γ ), j = 2′′, 6′′ (50)

These equilibrium conditions are a direct consequence of the ap-
plication of Theorem 1 to composition of equilibrium tensegrity
units. Note that the plate need not be fully populated with modules,
as shown in the center structure of Fig. 2. The class-1 tensegrity
towers can be viewed as composition of nm class-1 tensegrity mod-
ules. All of these modules have the same number of bars per stage
and admit n-fold rotational symmetry Cn . The only constraint for
nm of these equilibrium tensegrity structure to be compatible for the
composition operation is that the radii of the top and bottom of the
two adjacent structures are the same. This enables the top nodes of
one module to be attached to the bottom nodes of the adjacent mod-
ule (see Fig. 6). For a given collection of nm compatible equilibrium
tensegrity modules, Theorem 1 guarantees that the series of nm − 1
compositions yields an equilibrium class-2 tensegrity tower.

VI. Slowly Varying Nonlinear Systems
and Open Loop-Control

A. Parameterization of Tensegrity Structure Nonlinear
Dynamic Model

Several different nonlinear models of tensegrity structures have
been derived.20,21 What is common for all of them is that rest lengths
of elastic elements are parameters of the model. The open-loop con-
trol strategy that is postulated to control reconfiguration of equilib-
rium tensegrity structures is a result of a well-known result from
nonlinear control theory.

Proposition 1: Let a parameterized model of a nonlinear system
be given in the state-space form

dx
dτ

= f (x, δ), x ∈ Rn (51)
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Fig. 6 Composition of tower modules.

where δ represents the set of parameters defining the model of the
system. Let g(δ) satisfying

0 = f [g(δ), δ] (52)

be an exponentially stable equilibrium manifold of the system. If
a sufficiently slowly varying function δ = δ(τ ) is defined, then tra-
jectory x(τ ) of the system ẋ = f [x, δ(τ )] tracks the equilibrium
manifold g[δ(τ )].

Several references can be consulted for a more detailed analysis
related to this topic.24

B. Equilibrium Rest-Lengths Parameterization
For a given equilibrium tensegrity structure � = {E, P, �}, de-

pending on the material model used to build its elastic elements,
rest lengths l0i of the elastic elements ei are computed as

l0i = l0i (λi , li , zi , yi , ai , . . .) (53)

where the meaning of the parameters yi , ai , . . . appearing in Eq. (53)
depends on the material strain–stress relationship. In particular, for
the linear elastic material model of elastic elements with the cross-
section area ai and Young’s modulus yi the force–strain relationship
given by Hooke’s law

fi = λi li = zi yi ai

/
l0i

(
li − l0i

)
results so that Eq. (53) has the following form:

l0i = zi li yi ai

liλi + zi yi ai
(54)

Note that the lengths li of all elements of the structure � depend only
on the structure geometry P and connectivity E. For the structures
analyzed here, equilibria have been parameterized in terms of the
set � of feasible geometry and force parameters:

p = p(n, lb, r,α, t, γ )

λ = �λ, � = �(n, lb, r,α, t, γ )

λ, lb, r,α, t, γ ∈ � (55)

so that the equilibrium rest lengths are defined as

l0 = l0(λ, lb, r,α, t, γ ) (56)

once the material and cross sections have been assigned to all ele-
ments of the structure �.

Recall that the rest lengths l0 of the elastic members serve as the
parameters δ of the nonlinear dynamic model of the system (51),
so that using Eqs. (51) and (56) yields the parameterized structure
model

ẋ = f [x, l0(λ, lb, r,α, t, γ )] = f (x,λ, lb, r,α, t, γ ) (57)

Proposition 1 suggests that the system (57) tracks the equilibrium
configuration:

p(τ ) = p[lb, r(τ ),α(τ ), t(τ ), γ (τ )]

if one defines the sufficiently slowly varying functions

λ(τ ), r(τ ),α(τ ), t(τ ), γ (τ ) ∈ �

that define the desired configuration p(τ ) and the force densities
λ(τ ) at every time instance τ .

Assume that all bar elements are rigid, with fixed lengths lb as
it is postulated in several models.21 Then the only parameters of
the desired geometry of the system that can be time dependent are
λ(τ ), r(τ ),α(τ ), and t(τ ), and additionally γ (τ) for some stable
unit plates, so that the string elements rest-length open-loop control
becomes

l0i (τ ) = l0i [λ(τ ), r(τ ),α(τ ), t(τ ), γ (τ )], ei ∈ Es (58)

VII. Examples
A. Plate Deployment

The control objective is to deploy the 8 × 8 modules six-bar unit
plate with bar lengths lb = 2. To define the control law (58), a mono-
tonically increasing function r(τ ) on the interval (0, T ) is defined.
Any monotonically increasing r(τ ) on the interval (0, T ) drives the
plate from the stowed configuration with r(0) at τ = 0 to the de-
ployed configuration with r = r(T ) > r(0) at τ = T . In the same
fashion a monotonically decreasing r(τ ) should be defined to stow
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Fig. 7 Open-loop controlled deployment of a six-bar unit plate.

the structure back. The desired geometry parameter functions in
Eq. (58) are defined as follows:

r(τ ) = 0.2 + 0.04τ, α(τ) = π/3, t = 1, γ (τ ) = 0.2 + 0.02τ

0 < τ ≤ 20

r(τ ) = 1, α(τ ) = π/3, t = 1, γ (τ ) = 0.6

20 < τ ≤ 30

Bar force densities λi
1(τ ) of all of the 64 modules are set to be the

same throughout the deployment, so that λ
i
(τ ) = λi

1(τ ) = λ1(τ ) and

λ1(τ ) = 1, 0 < τ ≤ 20

λ1(τ ) = 1 − 0.02(τ − 20), 20 < τ ≤ 25

λ1(τ ) = 0.9, 25 < τ ≤ 30

Simulation results are depicted in Fig. 7. The ratio between the areas
of the plate in the final and initial configuration is approximately
25.

B. Tower Deployment
The control objective in this example is to deploy the class-2

tensegrity tower composed of four one-stage four-bar modules with
bar lengths lb = 6. To define the deployment control law (58), a
monotonically decreasing function r(τ ) on the interval (0, T ) is
defined. The desired geometry parameter functions in Eq. (58) are
defined as follows:

r(τ ) = 3.2 − 0.05τ, α(τ) = π/4, t = 1

0 < τ ≤ 10

r(τ ) = 3.2 − 0.05τ, α(τ) = π/4 + 0.03(10 − τ)(π/4)

t = 1, 10 < τ ≤ 25

r(τ ) = 1.95, α(τ ) = 1.45(π/4), t = 1, 25 < τ ≤ 30

Unlike the geometric parameters that are common for all
of the modules, force densities λi

1(τ ) are not. They are
set to be constant throughout the deployment, so that
λ(τ ) = [λ1

1(τ ) λ2
1(τ ) λ2

3(τ ) λ2
4(τ )]T , with

λ(τ ) = [1 2 2 1], 0 < τ ≤ 30

Masic23 provides the closed form of the string rest-length control.
Simulation results are depicted in Fig. 8. The ratio between the initial
and final height of the tower is approximately 4.5.

Fig. 8 Deployment of a class-1 tensegrity tower.

VIII. Conclusions
This paper analyzes properties of a special class of tensegrity

structures called modular tensegrity structures. Particular symme-
try of these structures is identified and implemented in a systematic
way to simplify their equilibrium analysis. The set of structure com-
position rules are defined for analysis and syntheses of this class of
structures. These rules show that the equilibrium of periodic mod-
ular tensegrity structures can be parameterized in terms of very few
meaningful geometric and force parameters. Applications of these
rules to several tensegrity structures in this paper provide equilib-
rium parametrizations for structures of arbitrary sizes.

The highly nonlinear nature of tensegrity structure models and
the nonautonomous character of tracking control problems make
the general tensegrity reconfiguration control a very difficult prob-
lem. Adding different performance requirements would make it even
more difficult. Hence, we offer this open-loop control result as a so-
lution for the tracking control problems associated with a wide class
of tensegrity reconfiguration strategies.

The analysis of the structures in this paper identified a conve-
nient set of parameters to characterize their equilibria and the set of
feasible values for these parameters. We also identified the parame-
ters useful for control in the open-loop control law. Nonuniqueness
of the possible choices for these parameters enables additional op-
timization criteria in the study of optimal structural and control
performances.
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